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a certain differential equation

Masanobu Kaneko

Abstract. We study solutions of a differential equation which arose in our previous
study of supersingular elliptic curves. By choosing one fifth of an integer k as the parameter
involved in the differential equation, we obtain modular forms of weight k as solutions. It is
observed that this solution also relates to supersingular elliptic curves.

1 Introduction

In our previous work [5],[3],[4], we studied various solutions of the specific differential equa-
tion

(])k f ′′(τ)−k + 1

6
E2(τ)f ′(τ)+

k(k + 1)

12
E ′

2(τ)f(τ) = 0 ( ′ =
1

2πi

d

dτ
= q

d

dq
, q = e2πiτ ),

where τ is a variable in the upper half-plane, k a fixed rational number, and E2(τ) the
“quasimodular” Eisenstein series of weight 2 for the full modular group SL(2,Z):

E2(τ) = 1− 24
∞∑

n=1

(∑

d|n
d
)
qn.

In [5], we showed that for even k ≥ 4 with k 6≡ 2 (mod 3), this differential equation has a
modular solution of weight k on SL(2,Z) explicitly describable in terms of the Eisenstein
series E4(τ) and E6(τ), and discussed a connection to supersingular elliptic curves in char-
acteristic p when k = p − 1. We studied further the modular/quasimodular solutions for
other integral or half-integral values of k in [3], [4].

In this paper, we set k = (6n+1)/5, one fifth of an integer congruent to 1 modulo 6. We
then encounter as solutions modular forms of weight k on the principal congruence subgroup
Γ(5). Also, modular forms on Γ1(5) arises naturally. In the next section we describe the
solutions in terms of fundamental modular forms of weight 1/5 which already appeared in
works of Klein or Ramanujan. The proof is in essence similar to the one given in [3]. In
§3, we discuss a relation to supersingular elliptic curves, which is quite analogous to the
situation studied in [5] and [8].

The author should like to express his sincere gratitude to Atsushi Matsuo, whose sugges-
tion that the cases k = 7/5, 13/5 would provide interesting modular solutions gave impetus
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to the present work. The author also learned from him that the differential equation (])k,
in its equivalent form, was already appeared in works of physicists, e.g., [6], [7], and its
solutions, at least for small values of k, correspond to particular models in conformal field
theory.

2 Main result

Let

φ1 = φ1(τ) =
1

η(τ)3/5

∑
n∈Z

(−1)nq(10n+1)2/40

= 1 +
3

5
q +

2

25
q2 − 28

125
q3 +

264

625
q4 +

532

15625
q5 + · · · ,

and

φ2 = φ2(τ) =
1

η(τ)3/5

∑
n∈Z

(−1)nq(10n+3)2/40

= q1/5(1− 2

5
q +

12

25
q2 +

37

125
q3 − 171

625
q4 − 3318

15625
q5 + · · · ).

Here, η(τ) is the Dedekind eta function. These forms are of weight 1/5 (with a suitable
multiplier system) on Γ(5) and the ring of holomorphic modular forms of weight 1

5
Z on

Γ(5) with this multiplier system is the polynomial ring C[φ1, φ2] (a good reference for this
is Ibukiyama [2]). Note that these forms are essentially the famous Rogers-Ramanujan
functions;

φ1 = η(τ)2/5q−1/60

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
,

φ2 = η(τ)2/5q11/60

∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
.

Theorem. Assume k = (6n+1)/5, n = 0, 1, 2, . . . , n 6≡ 4 (mod 5). Then the equation (])k

has two dimensional space of solutions in C[φ1, φ2]wt=k, the set of homogeneous polynomials
of degree 6n + 1 in φ1 and φ2.

Example: Here are a basis of solutions for small k:

k =
1

5
: φ1, φ2,

k =
7

5
: φ7

1 + 7φ2
1φ

5
2, 7φ2

1φ
5
2 − φ7

2,

k =
13

5
: φ13

1 + 39φ8
1φ

5
2 − 26φ3

1φ
10
2 , 26φ3

1φ
10
2 + 39φ5

1φ
8
2 − φ13

2 ,

k =
19

5
: φ19

1 + 171φ14
1 φ5

2 + 247φ9
1φ

10
2 − 57φ4

1φ
15
2 ,

57φ15
1 φ4

2 + 247φ10
1 φ9

2 − 171φ5
1φ

14
2 + φ19

2 .
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In general, we have a basis of the form φn+1
1 × (polynomial in φ5

1 and φ5
2) and φn+1

2 ×
(polynomial in φ5

1 and φ5
2). Here, we note that φ5

1 and φ5
2 become modular forms of weight

1 on Γ1(5) =

{(
a b
c d

)
| a ≡ d ≡ 1, c ≡ 0 (mod p)

}
.

In our previous cases treated in [5], [3], [4], all solutions were explicitly described with
the aid of hypergeometric series. In the present case, however, a differential equation with
four singularities emerges and we are so far not able to write down the explicit formulas
of the solutions in general. We can nevertheless prove the theorem by giving the solutions
recursively and by using an inductive structure of solutions of (])k revealed in [3].

To give a recursive description of the solutions, we change the variable by setting

f(τ)/φ5k
1 = F (t),

where
t = φ5

2/φ
5
1 = q − 5q2 + 15q3 − 30q4 + 40q5 + · · ·

is (the reciprocal of) the “Hauptmodul” of Γ1(5), and we consider the equation locally as t
a local variable. Then by a routine computation we see that f(τ) satisfies (])k if and only if
F (t) satisfies ([)k:

([)k t(t2 + 11t− 1)F ′′(t) +

(
7− 11k

6
t2 + 11(1− k)t +

k − 5

6

)
F ′(t)

+
k(5k − 1)

6
(t + 3)F (t) = 0,

where ′ = d/dt. Incidentally, an amusing remark here is that the equation

([)−1 t(t2 + 11t− 1)F ′′(t) + (3t2 + 22t− 1)F ′(t) + (t + 3)F (t) = 0

obtained by setting k = −1 in ([)k is exactly the one used in [1] for reconstructing Apéry’s
irrationality proof of ζ(2). The original equation (])k when k = −1 becomes the trivial
f ′′ = 0, but the solutions here are 1 and τ , “universal periods” of elliptic curves. So ([)−1 is
obtained from this trivial equation by rewriting it locally in terms of t-variable.

Now we want to show that ([)k has a polynomial solution P (t) if k = (6n + 1)/5 (n 6≡ 4
(mod 5)). If P (t) is such a solution, then φ5k

1 P (φ5
2/φ

5
1) and φ5k

2 P (−φ5
1/φ

5
2) are the solutions

to (])k. The second one is a solution because SL(2,Z) acts on the solution space and the

action of

(−3 −5
5 8

)
is φ1 7→ φ2, φ2 7→ −φ1 (we can check this by using the transformation

formulas of φ1 and φ1, see [2]).
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Proposition. For 0 ≤ n ≤ 8, n 6= 4, put

P0(t) = 1,

P1(t) = 1 + 7t,

P2(t) = 1 + 39t− 26t2,

P3(t) = 1 + 171t + 247t2 − 57t3,

P5(t) = 1− 465t− 10385t2 − 2945t3 − 8370t4 + 682t5,

P6(t) = 1− 333t− 17390t2 − 54390t3 + 26640t4 − 64158t5 + 3774t6,

P7(t) = 1− 301t− 36421t2 − 310245t3 + 10535t4 − 422303t5 + 283843t6

−12857t7,

P8(t) = 1− 294t− 101528t2 − 1798692t3 − 2747430t4 − 387933t5

−2086028t6 + 740544t7 − 26999t8.

For n ≥ 10, n 6≡ 4 (mod 5), define Pn(t) recursively by

Pn(t) = (1 + t2)(1− 522t− 10006t2 + 522t3 + t4)Pn−5(t) (1)

+12
(6n− 29)(6n− 49)

(n− 4)(n− 9)
t(1− 11t− t2)5Pn−10(t).

Then Pn(t) is a solution of ([)(6n+1)/5 for all n ≥ 0, n 6≡ 4 (mod 5).

Proof. We prove Proposition by induction on n. One may notice that the proof is essentially
a translation of Proposition 1 and Lemma in [3].

It is straightforward to check that each Pn(t) for n ≤ 8, n 6= 4 satisfies ([)(6n+1)/5. Suppose
that Pn−5(t) and Pn−10(t) satisfy ([)(6(n−5)+1)/5 and ([)(6(n−10)+1)/5 respectively. If we compute
the left-hand side of ([)(6n+1)/5 for F (t) = Pn(t) by substituting the definition (1) of Pn(t)
in terms of Pn−5(t) and Pn−10(t), and using the induction hypothesis ([)(6(n−5)+1)/5 and
([)(6(n−10)+1)/5, we see that Pn(t) satisfies ([)(6n+1)/5 if and only if the identity

12(36n2 − 468n + 1421)(t2 + 11t− 1)4Pn−10(t)

= 5(n− 9)(t4 − 228t3 + 494t2 + 228t + 1)P ′
n−5(t) (2)

−(6n2 − 83n + 261)(t3 − 171t2 + 247t + 57)Pn−5(t)

holds. We prove this also by induction on n. Suppose Pn−5(t) and Pn−10(t) satisfy (2).
We want to show the corresponding identity for n being replaced by n + 5. By replacing
Pn(t) by the right-hand side of (1) and then replacing Pn−10(t) by the right-hand side of (2)
divided by the coefficient 12(36n2 − 468n + 1421)(t2 + 11t− 1)4 (thus expressing everything
by Pn−5(t) and its derivatives), we obtain a multiple of the left-hand side of the differential
equation ([)(6(n−5)+1)/5 satisfied by Pn−5(t), which vanishes by the induction hypothesis. This
concludes the proof of the proposition and hence the theorem is proved.

3 Reduction modulo prime

In this section, we present some observation about reduction modulo a prime p of our poly-
nomials Pn(t) as a conjecture.

4



Let
j(t) = (1 + 228t + 494t2 − 228t3 + t4)3/t(1− 11t− t2)5

be the elliptic modular j-invariant expressed in terms of t = φ5
2/φ

5
1.

Conjecture. 1) Let p 6= 5 be a prime. Then Pp−1(t) mod p is a “supersingular t-polynomial”,
i.e., it is equal to

∏
t0∈F̄p

(t − t0) where t0 runs through such value that the corresponding

elliptic curve with j-invariant j(t0) is supersingular.
2) For p ≥ 7, the degrees of irreducible factors of Pp−1(t) mod p are as follows:

(i) If p ≡ 1 mod 5, all irreducible factors have degree 2.

(ii) If p ≡ 3, 7 mod 20, one factor has degree 2 and all the others have degree 4.

(iii) If p ≡ 13, 17 mod 20, all irreducible factors have degree 4.

(iv) If p ≡ 4 mod 5, then there are h linear factors and (p − 1 − h)/2 quadratic factors,
where

h = the class number of the imaginary quadratic field Q(
√−p)×





2 if p ≡ 1 mod 4

8 if p ≡ 3 mod 8

4 if p ≡ 7 mod 8

At least the first part of the conjecture should be proven by looking at the Hasse invariant
of a family of elliptic curves corresponding to Γ1(5), but we have not worked out this.
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